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Exposed 2-Homogeneous Polynomials
on the two-Dimensional Real Predual
of Lorentz Sequence Space

Sung Guen Kim

Abstract. We classify the exposed polynomials of the unit ball of the
space of 2-homogeneous polynomials on the two-dimensional real pred-
ual of Lorentz sequence space. In fact, we prove that

expBP(2d∗(1,w)2) = extBP(2d∗(1,w)2)

∖{
±

[
x2 − y2 ± 2wxy

1 + w2

]
,

±
[

1 − w

(1 + w)(1 + w2)
(x2 − y2) ± 2

(1 + w)2
xy

]}
.
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1. Introduction

We write BE for the closed unit ball of a real Banach space E and the dual
space of E is denoted by E∗. x ∈ BE is called an extreme point of BE if
y, z ∈ BE with x = 1

2 (y + z) implies x = y = z. x ∈ BE is called an exposed
point of BE if there is an f ∈ E∗ so that f(x) = 1 = ‖f‖ and f(y) < 1
for every y ∈ BE\{x}. It is easy to see that every exposed point of BE is
an extreme point. We denote by extBE and extBE the sets of exposed and
extreme points of BE , respectively. A mapping P : E → R is a continuous 2-
homogeneous polynomial if there exists a continuous symmetric bilinear form
L on the product E × E such that P (x) = L(x, x) for every x ∈ E. We de-
note by Ls(2E) the Banach space of all continuous symmetric bilinear forms
on E endowed with the norm ‖L‖ = sup‖x‖=‖y‖=1 |L(x, y)|. P(2E) denotes
the Banach space of all continuous 2-homogeneous polynomials from E into
R endowed with the norm ‖P‖ = sup‖x‖=1 |P (x)|. For more details about
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the theory of polynomials on a Banach space, we refer to [7]. In 2003, Kim
and Lee [23] studied exposed 2-homogeneous polynomials on Hilbert spaces.
Later, Choi and Kim [6] characterized the exposed points of the unit ball of
P(2l2p) (p = 1, 2,∞) and in 2007, Kim [15] characterized the exposed points
of the unit ball of P(2l2p) (1 < p < ∞, p �= 2). We refer to ([1–6,8–31] and
references therein) for some recent work about extremal properties of mul-
tilinear mappings and homogeneous polynomials on some classical Banach
spaces. Let 0 < w < 1 be fixed. We denote the two-dimensional real predual
of Lorentz sequence space by

d∗(1, w)2 :=
{

(x, y) ∈ R
2 : ‖(x, y)‖d∗ := max

{
|x|, |y|, |x| + |y|

1 + w

}}
.

In fact, the two-dimensional real predual of Lorentz sequence space d∗(1, w)2

is the plane R
2 with the octagonal norm of weight w. We will denote by

P (x, y) = ax2 + by2 + cxy a 2-homogeneous polynomial on d∗(1, w)2. In
2011, Kim [17] computed the norm of P ∈ P(2d∗(1, w)2) in terms of its real
coefficients and determined all the extreme polynomials of the unit ball of
P(2d∗(1, w)2). Recently, Kim [19] classified all the smooth polynomials of the
unit ball of P(2d∗(1, w)2). In this paper, using results of the previous works
[17,19,22], we classify the exposed polynomials of the unit ball of the space
P(2d∗(1, w)2). Indeed, we will show that

expBP(2d∗(1,w)2) = extBP(2d∗(1,w)2)

∖{
±

[
x2 − y2 ± 2wxy

1 + w2

]
,

±
[

1 − w

(1 + w)(1 + w2)
(x2 − y2) ± 2

(1 + w)2
xy

]}
.

2. The Results

Let P ∈ P(2d∗(1, w)2) with P (x, y) = ax2 + by2 + cxy for (x, y) ∈ d∗(1, w)2.
Note that if ‖P‖ = 1, then |a| ≤ 1, |b| ≤ 1 and |c| ≤ 4

(1+w)2 . Indeed, ‖P‖ ≥
|P (±(1+w

2 ), 1+w
2 )| = (1+w)2

4 |a + b ± c| = (1+w)2

4 (|a + b| + |c|) ≥ (1+w)2

4 |c|.
Since

‖ax2 + by2 + cxy‖ = ‖bx2 + ay2 ± cxy‖ = ‖ − bx2 − ay2 ± cxy‖,

we may assume that a ≥ |b| ≥ 0, c ≥ 0.

Theorem 1 [17, Theorem 1]. Let P ∈ P(2d∗(1, w)2) with P (x, y) = ax2 +
by2 + cxy for (x, y) ∈ d∗(1, w)2 with a ≥ |b| ≥ 0, c ≥ 0. Then,

Case 1: 0 ≤ c < 2|b|
Subcase 1: b < 0

(a) If c
2|b| ≤ w, then

‖P‖ = a +
c2

4|b| .
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(b) If c
2|b| > w, then

‖P‖ = bw2 + cw + a.

Subcase 2: If b > 0, then

‖P‖ = bw2 + cw + a.

Case 2: If 2|b| ≤ c ≤ 2a, then

‖P‖ = bw2 + cw + a.

Case 3: 2a < c

(a) If c−2a
c−2b < w, then

‖P‖ = bw2 + cw + a.

(b) If c−2a
c−2b ≥ w, then

‖P‖ =
(c2 − 4ab)(1 + w)2

4(c − a − b)
.

Theorem 2 [17, Theorem 2].

extBP(2d∗(1,w)2) =
{

±x2, ±y2, ± 1
1 + w2

(x2 + y2), ± 1
(1 + w)2

(x ± y)2

±
[
t(x2 − y2) ± 2

√
t(1 − t)xy

] (
1

1 + w2
≤ t ≤ 1

)
,

±
[
t(x2 − y2) ± 2 + 2

√
1 − t2(1 + w)4

(1 + w)2
xy

]

(
0 ≤ t ≤ 1 − w

(1 + w)(1 + w2)

)}
.

Theorem 3 [19, Theorem 3]. Let f ∈ P(2d∗(1, w)2)∗ and α = f(x2), β =
f(y2), γ = f(xy). Then,

‖f‖ = max
{

|α|, |β|, 1
1 + w2

|α + β|, 1
(1 + w)2

(|α + β| + 2|γ|),

t|α − β| + 2
√

t(1 − t)|γ|
(

1
1 + w2

≤ t ≤ 1
)

,

t|α − β| +
2 + 2

√
1 − t2(1 + w)4

(1 + w)2
|γ|

(
0 ≤ t ≤ 1 − w

(1 + w)(1 + w2)

)}
.

Observe that if 0 < w < 1 and w∗ = 1−w
1+w , then 0 < w∗ < 1 and

(w∗)∗ = w.

Lemma 4 [22, Lemma 2.4]. Let w∗ = 1−w
1+w . Then, there is an isometry

φ : d∗(1, w) → d∗(1, w∗) such that

φ(x, y) :=
(

x + y

1 + w
,
x − y

1 + w

)
.

Proof. By definition, the norms of (x, y) ∈ d∗(1, w) and (X,Y ) ∈ d∗(1, w∗)
are given by

Author's personal copy
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‖(x, y)‖d∗(1,w) = max
{

|x|, |y|, |x| + |y|
1 + w

}
,

‖(X,Y )‖d∗(1,w∗) = max
{

|X|, |Y |, |X| + |Y |
1 + w∗

}
.

Now, let (X,Y ) = φ(x, y) =
(

x+y
1+w , x−y

1+w

)
. Then,

‖(X,Y )‖d∗(1,w∗) = max
{∣∣∣ x+y

1+w

∣∣∣ ,
∣∣∣ x−y
1+w

∣∣∣ ,

( | x+y
1+w |+| x−y

1+w |
1+w∗

)}

= max
{

|x|+|y|
1+w , |x+y|+|x−y|

2

}

= max
{

|x|+|y|
1+w ,max{|x|, |y|}

}

= ‖(x, y)‖d∗(1,w).

�

Lemma 5. Let 0 < w < 1, w∗ = 1−w
1+w . (a) Define Φ: P(2d∗(1, w)2) →

P(2d∗(1, w∗)2) by Φ(P ) = P ◦ φ−1, where φ is the isometry in Lemma 4.
Then, Φ is an isometric isomorphism. Therefore, P ∈ extBP(2d∗(1,w)2) if and
only if Φ(P ) ∈ extBP(2d∗(1,w∗)2).

(b) Define Ψ: P(2d∗(1, w)2)∗ → P(2d∗(1, w∗)2)∗ by Ψ(f)(Φ(P )) = f(P )
(f ∈ P(2d∗(1, w)2)∗, P ∈ P(2d∗(1, w)2)). Then, Ψ is an isometric isomor-
phism. Therefore, P ∈expBP(2d∗(1,w)2) if and only if Φ(P )∈expBP(2d∗(1,w∗)2).

If f ∈P(2d∗(1, w)2)∗, then Ψ(f)(X2) = (1+w∗
2 )2(f(x2)+f(y2)+2f(xy)),

Ψ(f)(Y 2) = (1+w∗
2 )2(f(x2) + f(y2) − 2f(xy)), and Ψ(f)(XY ) = (1+w∗

2 )2

(f(x2) − f(y2)). Note that if Pt(x, y) = t(x2 − y2) ± 2
√

t(1 − t)xy ( 1
1+w2 ≤

t ≤ 1), then Φ(Pt)(X,Y ) = ± 2
√

t(1−t)

(1+w∗)2 (X2 − Y 2) ± 4t
(1+w∗)2 XY. From now

on, the variable x and y will be used in the definition of polynomials in
P(2d∗(1, w)2), whereas we use X and Y in the definition of polynomials in
P(2d∗(1, w∗)2).

Theorem 6.

expBP(2d∗(1,w)2) = extBP(2d∗(1,w)2)

∖{
±

[
x2 − y2 ± 2wxy

1 + w2

]
,

±
[

1 − w

(1 + w)(1 + w2)
(x2 − y2) ± 2

(1 + w)2
xy

]}
.

Proof. We will use the following notations for the extreme points of
BP(2d∗(1,w)2):

Pt(x, y) = t(x2 − y2) + 2
√

t(1 − t)xy

(
1

1 + w2
≤ t ≤ 1

)
,

P̃t(x, y) = t(x2 − y2) − 2
√

t(1 − t)xy

(
1

1 + w2
≤ t ≤ 1

)
,

Qs(x, y)=s(x2 − y2)+
2+2

√
1 − s2(1 + w)4

(1 + w)2
xy

(
0 ≤ s≤ 1 − w

(1+w)(1+w2)

)
,
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Q̃s(x, y)=s(x2−y2)− 2 + 2
√

1 − s2(1+w)4

(1 + w)2
xy

(
0≤s≤ 1 − w

(1 + w)(1 + w2)

)
,

R1(x, y) = x2,

R2(x, y) = y2,

R3(x, y) =
1

1 + w2
(x2 + y2),

R4(x, y) =
1

(1 + w)2
(x + y)2,

R5(x, y) =
1

(1 + w)2
(x − y)2.

First, we will show that R1(x, y) ∈ expBP(2d∗(1,w)2). Indeed, let f ∈
P(2d∗(1, w)2)∗ be such that f(x2) = 1, f(y2) = w2

2 , f(xy) = 0. By Theo-
rem 3, ‖f‖ = 1. We will show that f exposes R1. Suppose that Q(x, y) =
ax2+by2+cxy ∈ P(2d∗(1, w)2) such that ‖Q‖ = 1 = f(Q). Then, a+ bw2

2 = 1.

Since ‖(1,
w sign(c)√

2
)‖d∗ = 1 and ‖Q‖ = 1, then 1+ w|c|√

2
= Q(1,

w sign(c)√
2

) ≤ 1,

from which we have c = 0. For 0 < t < w, ‖(1, t)‖d∗ = 1 and a + bt2 =
Q(1, t) ≤ 1 = a + bw2

2 . As t → 0, b ≥ 0. As t → w, b ≤ 0. Therefore,
b = 0 and a = 1. So Q(x, y) = R1(x, y). Similarly, −R1(x, y), ±R2(x, y) ∈
expBP(2d∗(1,w)2). The latter shows also that ±X2 and ±Y 2 are exposed poly-
nomials in BP(2d∗(1,w∗)2). Since 1

(1+w)2 (x + y)2 = Φ−1(X2) and 1
(1+w)2 (x −

y)2 = Φ−1(Y 2), by Lemma 5, ±R4(x, y),±R5(x, y) ∈ expBP(2d∗(1,w)2).
We claim that P1(x, y) = x2 − y2 ∈ expBP(2d∗(1,w)2). Indeed, ‖P1‖ = 1

by Theorem 1 and let f ∈ P(2d∗(1, w)2)∗ be such that f(x2) = 1
2 , f(y2) =

− 1
2 , f(xy) = 0. We will show that f exposes P1. Suppose that Q(x, y) =

ax2+by2+cxy ∈ P(2d∗(1, w)2) such that ‖Q‖ = 1 = f(Q). Since 1 = f(Q) =
1
2 (a−b) and |a| ≤ 1, |b| ≤ 1, we have a = 1, b = −1. We claim that c = 0. Let
S(x, y) = x2−y2+|c|xy. Since ‖S‖ = 1 and ‖1, tw‖d∗ = 1 for every 0 < t ≤ w,
1 − t2w2 + |c|tw = S(1, tw) ≤ 1 for every 0 < t ≤ w. As t → 0, c = 0. So
Q(x, y) = P1(x, y). Similarly, −P1(x, y) ∈ expBP(2d∗(1,w)2). Since 4

(1+w)2 xy =
Φ−1(X2 − Y 2), by Lemma 5, ± 4

(1+w)2 xy = ±Q0(x, y) ∈ expBP(2d∗(1,w)2).
Next, we will show that R3(x, y) ∈ expBP(2d∗(1,w)2). Let f ∈ P(2d∗(1, w)2)∗

be such that f(x2) = 1+w2

2 = f(y2), f(xy) = 0. Obviously, f(R3) = 1 and
by Theorem 3, ‖f‖ = 1. We will show that f exposes R3. Suppose that
Q(x, y) = ax2 + by2 + cxy ∈ P(2d∗(1, w)2) is such that ‖Q‖ = 1 = f(Q).
Since 1 = f(Q), a + b = 2

1+w2 . Since 1 < 2
1+w2 < 2 and |a| = |Q(1, 0)| ≤

1, |b| = |Q(0, 1)| ≤ 1, we have a > 0, b > 0. First, suppose that a ≥ b > 0.
Put a = 1

1+w2 + t, b = 1
1+w2 − t for 0 ≤ t < 1

1+w2 . We claim that t = 0 = c.
It follows that

1 ≥ |Q(1, sign(c)w)| = 1 + t(1 − w2) + |c|w,

which shows that t = 0 = c. So Q(x, y) = R3(x, y). Suppose that 0 < a ≤ b.
Let a = 1

1+w2 −l, b = 1
1+w2 +l for 0 ≤ l < 1

1+w2 . We also claim that l = 0 = c.
It follows that

Author's personal copy
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1 ≥ |Q(sign(c)w, 1)| = 1 + l(1 − w2) + |c|w,

which shows that l = 0 = c. So Q(x, y) = R3(x, y). Similarly, −R3(x, y) ∈
expBP(2d∗(1,w)2).

Claim. P 1
1+w2

(x, y) = 1
1+w2 (x2 − y2 + 2wxy) /∈ expBP(2d∗(1,w)2).

Let f ∈ P(2d∗(1, w)2)∗ be such that 1 = ‖f‖ = f(P 1
1+w2

). Then, (α −
β) + 2wγ = 1 + w2. By Theorem 1, |γ| = |f(xy)| ≤ ‖f‖‖xy‖ = (1+w)2

4 . We

claim that 0 ≤ α − β. If α − β < 0, then 1+w2

2w < γ ≤ (1+w)2

4 , which is a
contradiction. Since

α − β = f(x2 − y2) ≤ ‖f‖ = 1 = (α − β) + 2wγ − w2,

γ ≥ w
2 . Notice that 1

1+w2 ≤ 1
2 + α−β

2
√

(α−β)2+4γ2
or α−β

(1+w)2
√

(α−β)2+4γ2
≤

1−w
(1+w)(1+w2) . First, suppose that 1

1+w2 ≤ 1
2 + α−β

2
√

(α−β)2+4γ2
. Then, 1

1+w2 ≤
1
2 + α−β

2
√

(α−β)2+4γ2
≤ 1. Define

g(x) = (α − β)x + 2
√

x(1 − x)γ
(

1
1 + w2

≤ x ≤ 1
)

.

It follows that, by Theorem 3,

1 = ‖f‖ ≥ g

(
1
2

+
α − β

2
√

(α − β)2 + 4γ2

)
=

(α − β) +
√

(α − β)2 + 4γ2

2
,

which implies that, because of α − β = 1 + w2 − 2wγ,

2 ≥ α − β +
√

(α − β)2 + 4γ2 = 1 + w2 − 2wγ +
√

(1 + w2 − 2wγ)2 + 4γ2,

which is equivalent to the inequality 1−w2+2wγ ≥ √
(1 + w2 − 2wγ)2 + 4γ2,

which reduces to the inequality (γ − w)2 ≤ 0, which implies that γ = w and
α − β = 1 − w2. Then, 1 = f(Q 1−w

(1+w)(1+w2)
), which shows that f cannot

expose P 1
1+w2

. Since f is arbitrary, we complete the proof of the claim if
1

1+w2 ≤ 1
2 + α−β

2
√

(α−β)2+4γ2
. Suppose that α−β

(1+w)2
√

(α−β)2+4γ2
≤ 1−w

(1+w)(1+w2) .

Define

l(x) = (α − β)x +
2 + 2

√
1 − (1 + w)4x2

(1 + w)2
γ

(
0 ≤ x ≤ 1 − w

(1 + w)(1 + w2)

)
.

It follows that, by Theorem 3,

1 = ‖f‖ ≥ l

(
α − β

(1 + w)2
√

(α − β)2 + 4γ2

)
=

√
(α − β)2 + 4γ2 + 2γ

(1 + w)2
,

which implies that, because of α − β = 1 + w2 − 2wγ,

(1 + w)2 − 2γ ≥
√

(α − β)2 + 4γ2 =
√

(1 + w2 − 2wγ)2 + 4γ2,

which is equivalent to the inequality (w2 +2w+1−2γ)2 − (w2 +1−2wγ)2 ≥
4γ2, which reduces to the inequality (γ−w)(w2γ+w2+w+1) = w2γ2+(−w3+
w2+w+1)γ−w(w2+w+1) ≤ 0, which implies that, since w2γ+w2+w+1 >

Author's personal copy
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0, we have γ ≤ w. Note that the inequality 1
1+w2 ≤ 1

2 + α−β

2
√

(α−β)2+4γ2
is

equivalent to the inequality (α − β)2 + 4γ2 ≤ ( 1+w2

1−w2 )2(α − β)2, which is also
equivalent to the inequality [w(1+w2)+(1−3w2)γ][−w(1+w2)+(1+w2)γ] ≤
0. Observe that w(1+w2)+ (1− 3w2)γ > 0 and −w(1+w2)+ (1+w2)γ ≤ 0
because γ ≤ w. Hence, we have 1

1+w2 ≤ 1
2 + α−β

2
√

(α−β)2+4γ2
.

The above argument of the case of 1
1+w2 ≤ 1

2 + α−β

2
√

(α−β)2+4γ2
shows

that f cannot expose P 1
1+w2

. Since f is arbitrary, we complete the proof of

the claim if α−β

(1+w)2
√

(α−β)2+4γ2
≤ 1−w

(1+w)(1+w2) .

Claim. P̃ 1
1+w2

(x, y) /∈ expBP(2d∗(1,w)2).

Otherwise, there exists an f ∈ P(2d∗(1, w)2)∗ with 1 = ‖f‖ which
exposes P̃ 1

1+w2
. Let α = f(x2), β = f(y2), γ = f(xy). Then, f(P 1

1+w2
) <

1. Let g ∈ P(2d∗(1, w)2)∗ be such that g(x2) = α, g(y2) = β, g(xy) =
−γ. Then, g(P 1

1+w2
) = 1. By Theorem 3, ‖g‖ = 1. Note that g exposes

P 1
1+w2

. Indeed, let Q(x, y) = ax2 + by2 + cxy ∈ P(2d∗(1, w)2) be such that

‖Q‖ = 1 = g(Q). Let Q̃(x, y) = Q(x,−y) = ax2 + by2 − cxy. By Theo-
rem 1, ‖Q̃‖ = 1 and 1 = g(Q) = f(Q̃). Hence, Q̃ = P̃ 1

1+w2
, which implies

Q = P 1
1+w2

. Therefore, g exposes P 1
1+w2

, which is a contradiction because

P 1
1+w2

/∈ expBP(2d∗(1,w)2). Similarly, −P̃ 1
1+w2

(x, y) /∈ expBP(2d∗(1,w)2). Since
1−w

(1+w)(1+w2) (x
2 − y2) ± 2

(1+w)2 xy = Φ−1( 1
1+(w∗)2 (X2 − Y 2 ± 2w∗XY )), by

Lemma 5, ±Q 1−w

(1+w)(1+w2)
(x, y),±Q̃ 1−w

(1+w)(1+w2)
(x, y) /∈ expBP(2d∗(1,w)2).

Claim. Pt(x, y) ∈ expBP(2d∗(1,w)2) for 1
1+w2 < t < 1.

Let 1
1+w2 < t < 1 be fixed. Let ft ∈ P(2d∗(1, w)2)∗ be such that ft(x2) =

1 − 1
2t , ft(y2) = −1 + 1

2t and ft(xy) =
√

1−t
t . Note that |ft(Rk)| < 1 for

1 ≤ k ≤ 5. We also have ft(Pt) = 1 and −1 < ft(P̃l) < ft(Pl) = l(2 − 1
t ) +

2
√

l(1 − l)
√

1−t
t < 1 for l �= t, 1

1+w2 ≤ l ≤ 1. Hence,

(∗) |ft(Rk)| < 1, |ft(Pl)| < 1, |ft(P̃t)| < 1, |ft(P̃l)| < 1 for 1 ≤ k ≤ 5,

l �= t,
1

1 + w2
≤ l ≤ 1.

Define

h(s) := ft(Qs)

=
(

2− 1
t

)
s+

2+2
√

1−(1+w)4s2

(1+w)2

√
1−t

t

(
0≤s≤ 1−w

(1+w)(1+w2)

)
.

Then, since the only root of h
′
(s) = 0 in [0, 1−w

(1+w)(1+w2) ] is 2t−1
(1+w)2 and

h
′′
( 2t−1
(1+w)2 ) = 0, we have
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sup
0≤s≤ 1−w

(1+w)(1+w2)

h(s) = h

(
2t − 1

(1 + w)2

)
=

1 + 2
√

t(1 − t)
(1 + w)2t

< 1.

Hence, −1 < ft(Q̃s) < ft(Qs) < 1 for 0 ≤ s ≤ 1−w
(1+w)(1+w2) . Hence,

(∗∗) |ft(Qs)| < 1 and |ft(Q̃s)| < 1 for 0 ≤ s ≤ 1 − w

(1 + w)(1 + w2)
.

By Theorem 3, ‖ft‖ = 1. We will show that ft exposes Pt. Let Q(x, y) = ax2+
by2+cxy ∈ P(2d∗(1, w)2) such that 1 = ‖Q‖ = ft(Q). We will show that Q =
Pt. Since P(2d∗(1, w∗)2) is a finite dimensional Banach space with dimension
3, by the Krein–Milman theorem, BP(2d∗(1,w∗)2) is the closed convex hull of
extBP(2d∗(1,w∗)2). Then,

Q(x, y) =
∑

1≤k≤5

λkRk(x, y) +
∞∑

j=1

βjQsj
(x, y) +

∞∑
n=1

γnQ̃s′
n
(x, y)

+
∞∑

m=1

δmPtm(x, y) +
∞∑

l=1

εlP̃t
′
l
(x, y)

for some λk, βj , γn, δm, εl ∈ R with

(∗ ∗ ∗)
∑

1≤k≤5

|λk| +
∞∑

j=1

|βj | +
∞∑

n=1

|γn| +
∞∑

m=1

|δm| +
∞∑

l=1

|εl| ≤ 1

and some 0 ≤ sj , s
′
n ≤ 1−w

(1+w)(1+w2) and 1
1+w2 ≤ tm, t

′
l ≤ 1 for every

j, n,m, l ∈ N.

Claim. λk = βj = γn = 0, for every 1 ≤ k ≤ 5, j, n ∈ N.

Assume that λk0 �= 0 for some 1 ≤ k0 ≤ 5. It follows that

1 = ft(Q) =
∑

1≤k≤5

λkft(Rk) +

∞∑
j=1

βjft(Qsj ) +

∞∑
n=1

γnft(Q̃s′
n
)

+

∞∑
m=1

δmft(Ptm) +

∞∑
l=1

εlft(P̃t
′
l
)

≤|λk0 | |ft(Rk0)|+
∑

1≤k �=k0≤5

|λk||ft(Rk)|+
∞∑
j=1

|βj ||ft(Qsj )|+
∞∑

n=1

|γn||ft(Q̃s′
n
)|

+
∞∑

m=1

|δm||ft(Ptm)| +
∞∑
l=1

|εl||ft(P̃t
′
l
)|

< |λk0 | +
∑

1≤k �=k0≤5

|λk||ft(Rk)| +
∞∑
j=1

|βj ||ft(Qsj )| +
∞∑

n=1

|γn||ft(Q̃s′
n
)|

+
∞∑

m=1

|δm||ft(Ptm)| +
∞∑
l=1

|εl||ft(P̃t
′
l
)| (by (*))
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≤ |λk0 | +
∑

1≤k �=k0≤5

|λk| +
∞∑
j=1

|βj | +
∞∑

n=1

|γn| +
∞∑

m=1

|δm| +
∞∑
l=1

|εl| (by (*))

≤ 1 (by (***)),

which is impossible. Therefore, λk = 0, for every 1 ≤ k ≤ 5.

Assume that βj0 �= 0 for some j0 ∈ N. Using a similar argument as
above, we have

1 = ft(Q) =
∞∑

j=1

βjft(Qsj
) +

∞∑
n=1

γnft(Q̃s′
n
)

+
∞∑

m=1

δmft(Ptm) +
∞∑

l=1

εlft(P̃t
′
l
)

≤ |βj0 | |ft(Qsj0
)| +

∞∑
j �=j0,j=1

|βj ||ft(Qsj
)| +

∞∑
n=1

|γn||ft(Q̃s′
n
)|

+
∞∑

m=1

|δm||ft(Ptm)| +
∞∑

l=1

|εl||ft(P̃t
′
l
)|

< |βj0 | +
∞∑

j �=j0,j=1

|βj ||ft(Qsj
)| +

∞∑
n=1

|γn||ft(Q̃s′
n
)|

+
∞∑

m=1

|δm||ft(Ptm)| +
∞∑

l=1

|εl||ft(P̃t
′
l
)| (by (**))

≤
∞∑

j=1

|βj | +
∞∑

n=1

|γn| +
∞∑

m=1

|δm| +
∞∑

l=1

|εl|

≤ 1,

which is impossible. Therefore, βj = 0, for every j ∈ N. Using a similar
argument as above, we have γn = 0, for every n ∈ N. Therefore,

Q(x, y) =
∞∑

m=1

δmPtm(x, y) +
∞∑

l=1

εlP̃t
′
l
(x, y).

We claim that for every l ∈ N, then εl = 0. Assume that εl0 �= 0 for some
l0 ∈ N. Then,

1 = ft(Q) =
∞∑

m=1

δmft(Ptm) +
∞∑

l=1

εlft(P̃t
′
l
)

≤
∞∑

m=1

|δm||ft(Ptm)| + |εl0 ||ft(P̃t
′
l0

)| +
∞∑

l �=l0,l=1

|εl||ft(P̃t
′
l
)|

<
∞∑

m=1

|δm||ft(Ptm)| + |εl0 | +
∞∑

l �=l0,l=1

|εl||ft(P̃t
′
l
)| (by (*)
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≤
∞∑

m=1

|δm| +
∞∑

l=1

|εl|

≤ 1,

which is impossible. Therefore, εl = 0 for every l ∈ N. So

Q(x, y) =
∞∑

m=1

δmPtm(x, y).

We will show that if tm �= t for some m ∈ N, then δm = 0. Suppose that
tm0 �= t for some m0 ∈ N. Assume that δm0 �= 0.

1 = ft(Q) =
∞∑

m=1

δmft(Ptm)

≤ |δm0 ||ft(Ptm0
)| +

∞∑
m �=m0,m=1

|δm||ft(Ptm)|

< |δm0 | +
∞∑

m �=m0,m=1

|δm||ft(Ptm)| + (by (*))

≤
∞∑

m=1

|δm|

≤ 1,

which is impossible. Hence, δm0 = 0. Therefore,

Q(x, y) =

( ∞∑
m=1

δm

)
Pt(x, y) = Pt(x, y),

from which Pt(x, y)∈expBP(2d∗(1,w)2) for 1
1+w2 < t < 1. Similarly, ±P̃t(x, y)∈

expBP(2d∗(1,w)2) for 1
1+w2 < t < 1.

Claim. Qs(x, y) ∈ expBP(2d∗(1,w)2) for 0 < s < 1−w
(1+w)(1+w2) .

By Lemma 5, it is enough to show that Φ(Qs) ∈ expBP(2d∗(1,w∗)2). It
follows that

Φ(Qs)(X,Y ) = Qs ◦ φ−1(X,Y ))

=

(
s(x2 − y2) +

2 + 2
√

1 − s2(1 + w)4

(1 + w)2
xy

)
◦ φ−1(X,Y )

= s

((
1 + w

2

)2

(X + Y )2 −
(

1 + w

2

)2

(X − Y )2
)

+
2 + 2

√
1 − s2(1 + w)4

(1 + w)2

(
1 + w

2

)2

(X2 − Y 2)

=
1 +

√
1 − s2(1 + w)4

2
(X2 − Y 2) + (1 + w)2sXY.
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Let t = 1+
√

1−s2(1+w)4

2 . Then, 1
1+(w∗)2 < t < 1 and Φ(Qs)(X,Y )=Pt(X,Y )∈

expBP(2d∗(1,w∗)2). Similarly, −Qs(x, y) ∈ expBP(2d∗(1,w)2) for 0 < s <
1−w

(1+w)(1+w2) .

Claim. Q̃s(x, y) ∈ expBP(2d∗(1,w)2) for 0 < s < 1−w
(1+w)(1+w2) .

Since Qs(x, y) ∈ expBP(2d∗(1,w)2), there exists an f ∈ P(2d∗(1, w)2)∗

with 1 = ‖f‖ which exposes Qs. Let α = f(x2), β = f(y2), γ = f(xy).
Let g ∈ P(2d∗(1, w)2)∗ be such that g(x2) = α, g(y2) = β, g(xy) = −γ.

Then, g(Q̃s) = 1. By Theorem 3, ‖g‖ = 1. Note that g exposes Q̃s. Indeed,
let Q(x, y) = ax2 + by2 + cxy ∈ P(2d∗(1, w)2) be such that ‖Q‖ = 1 =
g(Q). Let Q̃(x, y) = Q(x,−y) = ax2 + by2 − cxy. By Theorem 1, ‖Q̃‖ = 1
and 1 = g(Q) = f(Q̃). Hence, Q̃ = Q̃s, which shows that g exposes Q̃s.

Similarly, −Q̃s(x, y) ∈ expBP(2d∗(1,w)2) for 0 < s < 1−w
(1+w)(1+w2) . Therefore,

we complete the proof of Theorem 6. �
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